Asymptotics of the Number of Involutions in Finite Classical Groups

نویسندگان

  • Geoff Robinson
  • DENNIS STANTON
چکیده

Answering a question of Geoff Robinson, we compute the large n limiting proportion of i(n, q)/qbn 2/2c, where i(n, q) denotes the number of involutions in GL(n, q). We give similar results for the finite unitary, symplectic, and orthogonal groups, in both odd and even characteristic. At the heart of this work are certain new “sum=product” identities. Our self-contained treatment of the enumeration of involutions in even characteristic symplectic and orthogonal groups may also be of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A semi-recursion for the number of involutions in special orthogonal groups over finite fields

Let I(n) be the number of involutions in a special orthogonal group SO(n,Fq) defined over a finite field with q elements, where q is the power of an odd prime. Then the numbers I(n) form a semi-recursion, in that for m > 1 we have I(2m+ 3) = (q + 1)I(2m+ 1) + q(q − 1)I(2m− 2). We give a purely combinatorial proof of this result, and we apply it to give a universal bound for the character degree...

متن کامل

Models and refined models for involutory reflection groups and classical Weyl groups

A finite subgroup G of GL(n,C) is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements g ∈ G such that gḡ = 1, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including,...

متن کامل

On Involutions Arising from Graphs

We investigate various aspects of involutions of groups, i.e, anti-automorphisms of order at most two. The emphasis is on finite abelian groups. We count the number of involutions for the cyclic groups, and consider the problem for direct products of groups. We also give a characterization for the set of skewed squares of finitely generated abelian groups with identity as the involution. The pr...

متن کامل

On Involutive Anti-Automorphisms of Finite Abelian Groups

We investigate various aspects of involutions of groups, i.e, anti-automorphisms of order at most two. The emphasis is on finite abelian groups. We count the number of involutions for the cyclic groups, and consider the problem for direct products of groups. We also give a characterization for the set of skewed squares of finitely generated abelian groups with identity as the involution. The pr...

متن کامل

Asymptotic Cost of Cutting Down Random Free Trees

In this work, we calculate the limit distribution of the total cost incurred by splitting a tree selected at random from the set of all finite free trees. This total cost is considered to be an additive functional induced by a toll equal to the square of the size of tree. The main tools used are the recent results connecting the asymptotics of generating functions with the asymptotics of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016